
 

 
3rd Congress of the Alps Adria Acoustics Association 

27–28 September 2007, Graz – Austria 
 
 

 

 
 
 

DETECTION OF AUDIBLE RESONANCES  
 

Ivo Mateljan, Heinrich Weber*, Ante Doric** 
 

Faculty of electrical engineering, R. Boskovica bb, 21000 Split ( ivo.mateljan@fesb.hr),  *CTC, 
Langelohstraße 134, D-22549 Hamburg (ctc@ctc-dr-weber.de), **Croatian Radio Split, 21000 Split 

(ante.doric@hrt.hr) 
 
 

Abstract: The paper discusses the problem of the detection of audible resonances. The basic psychoacoustic researches 
have shown that the threshold of resonance detection can be classified by resonance level and Q-factor. In this work a 
third criteria is introduced. It is the energy of the resonance.  By analyzing the influence of resonances on the 
frequency response and group delay, it is shown that it is almost impossible to detect resonances that are near the 
threshold of audibility. Finally, three common techniques for resonance detection are compared: the cumulative 
spectral decay, the shaped sine burst decay and the transfer function pole–zero identification. In the 
conclusion suggestions for the use of the particular method are given. 
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1. INTRODUCTION 

 
Physical sources of resonances are structural 

vibrations and standing waves.  Delayed (reflected) 
waves are not resonances, but if they form standing 
waves or if they excite additional structural vibrations 
they are called delayed resonances.  

Detection and perceptual evaluation of loudspeaker 
resonances is of prime importance in loudspeaker design. 
Resonances represent the main cause of unpleasant 
loudspeaker sound. They affect three main loudspeaker 
characteristics: tonal balance, modulation dynamics and 
object perception. The change in tonal balance is usually 
called coloration. The change in object perception is 
usually described as boxy sound. The change in 
modulation depth is usually described as change in 
transparency and dynamics. Opposite to unwanted effects 
in sound reproduction resonances have a specific role in 
sound generation in musical instruments. This paper 
considers detection of resonances in sound reproduction 
systems only. 

In the next section a perceptual model for the 
evaluation of loudspeaker resonances is presented. It is 
based on the well known works of Fryer [1], Floyd and 
Olive [2]. They analysed the threshold of audibility of 
resonances and showed that steady state amplitude and Q-
factor of resonances are key factors in determining the 
threshold of resonance audibility. By using their results a 

simple energetic model of resonance detection is 
presented. It was shown that objective detection of 
audible resonances is very difficult as some audible 
resonances make very small, almost non-measurable 
changes to audio signals.  

The paper discusses three advanced measurement 
methods for the detection of resonances: 

1) Cumulative spectral decay, as special case of the 
Short Time Fourier Transform method, 

2) Burst decay envelope as a case of continuous 
wavelet transform with optimal time-frequency 
bandwidth, 

3) Pole-zero identification. 
 
Beside using these advanced techniques, resonances 

can be partly detected from classical measurement curves: 
frequency response, group delay, loudspeaker input 
impedance and harmonic distortions.  Simple, non-
quantified resonance detection is possible by noting 
changes in monotonicity of these curves. 

For the analyzed resonance detection methods key 
properties are:  

1) visualization of resonances decay pattern with 
optimal time-bandwidth resolution,  

2) estimation of basic resonance parameters (Q-
factor, resonance frequency and resonance level),  

3) discrimination of resonances from reflections. 
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The conclusion gives directions for applicability of 
these methods in acoustical instrumentation. 

 
 
2. PERCEPTUAL MODEL FOR RESONANCE 

DETECTION 
 

The works of Fryer [1], Floyd and Olive [2] give a 
very simple perceptual model for the detection of 
resonances. They analyzed the threshold of audibility of a 
band pass filtered signal that was added to original signal. 
The filter had a characteristic of a first order resonator 
with known Q-factor, resonant frequency fr  and steady 
state gain level Lr. The results of Fryer are shown in 
Figure 1.  
 

 
 

Fig. 1. Results for the threshold of resonance audibility 
(range of  Q from 1 to 50) after Fryer [1] 

 

Floyd and Olive [2] got almost the same results for 
threshold levels as in Fryer’s work (within ±3dB). From 
their work, we find following important conclusions:  

1. The perceptual resonance threshold level is 
lowest if the test signal is white or pink noise.  

2. The lowest threshold level is for Q=1 and   
depends on frequency, and has a value from -
29dB to -23dB. 

3. The threshold level is proportional to Q-factor, 
which means that resonances with a low Q are 
more audible than with a high Q. Doubling the 
resonance Q-factor raises the threshold of 
resonances audibility for 3dB. 

4. If the resonance signal is delayed for more than 
1ms the perceptual threshold is becoming lower 
for transient signals, or becoming higher for 
complex signals and noise. For example, if 
resonance is delayed 20ms the threshold for 
transient signal is being lowered to -40dB. 

5. Resonances with Q>50 are more audible with 
transient signals while resonances with Q<10 are 
more audible with continuous complex signals.  

6. Although there is a slight frequency dependence 
of the threshold level it is practically 
independent from frequency for Q<10. 
Differences in threshold levels are less than 
±5dB.  

 

 
Fig. 2. Resonant filter with gain A, resonant frequency fr 
and -3dB bandwidth Δf = f2 - f1 

 
One question arises from these conclusions and needs 

additional explanation: Why low-Q resonances are more 
audible than high-Q resonance? The explanation can be 
given from famous masking experiments [3] where it was 
shown that the loudness of a narrowband signal is 
proportional to signal energy.  

The Parsavel theorem states that the wideband signal 
energy that passes through resonant filter is equal to the 
integral of the signal power spectral density. For the 
resonant filter that is shown in Fig. 2 the energy of 
wideband noise or transient signal is equal to:   
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where: Q = fr / (f2-f1). 
Expression (1) shows that the energy of wideband 

signals, that passes a resonant filter on frequency fr, is 
inversely proportional to the filter Q-factor. By doubling 
the Q-factor the energy is being lowered 3dB. This 



explains Floyd’s second conclusion that doubling the 
resonance Q-factor raises the threshold of audibility for 
3dB. Low-Q resonances span over several critical bands 
so their loudness can be even larger than loudness of 
high-Q resonances that are localized inside the same 
critical band. 

 
 

3. FREQUENCY RESPONSE WITH RESONANCES 
 

It is interesting to analyze how a single resonance 
changes frequency response of the system. We use a 
additive model of the system transfer function H(s). It is 
composed out of the resonant part Hr(s) and the non 
resonant part H’(s). 
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The resonant part of the transfer function can be 
described with pairs of complex conjugate poles sp = -α ± 
jβ. Partial fractional expansion of those poles that have 
complex residuum amplitude R=r ± jv, have the 
following forms: 

 

( )
βαβα js

R
js

RsH r −+
+

++
=

∗

   (3) 

( )
22

2
n

n
r

Q
ss

r
vs

rsH
ωω

βα

++

⎟
⎠
⎞

⎜
⎝
⎛ −+

=    (4)  

 
In these equations the resonant behavior is described 

completely by three parameters: 

1. Natural resonant frequency: ,   ( ) 2/122 −
+= βαωn

2. Q-factor: αω 2/nQ = , 
3. ΔL – difference of resonator maximum magnitude 

level and system magnitude level. If ΔL is below the 
value of perceptual threshold Lr, the resonance is not 
audible.  

This means that if we estimate values of poles and 
zeros of the transfer function, a partial fractional 
expansion of the transfer function gives us all the 
necessary information for the perceptual evaluation of 
resonances. This will be discussed more in detail in 
section 7. 

It is interesting to analyse the contribution of 
resonances that are close to the threshold of audibility to 
the frequency response. Three cases, for Q = 1, 3, 10, are 
shown in Fig. 3. The least contribution to the frequency 
response is for  Q=1. The maximum change of magnitude 
level is less than 0,8dB, change of phase is less than 2o 
and change of group delay is less than 0,05ms. The 
conclusion is that it is very difficult or almost impossible 
to detect these low-Q resonances from frequency 
response curves. Differences from the ideal case are less 

than the ripple of frequency response of good measuring 
microphones.  

 
 

 
 

Fig. 3.  Contribution to frequency response of resonances 
with Q = 1, 3, 10. The level of each resonance is close to 
the threshold of audibility.   
 
 

4. DO WE NEED DAMPING? 
 

The conclusion that resonances with a low Q-factor 
have a lower threshold of audibility than resonances with 
a high Q-factor implies the question:  Does damping of 
resonances reduce their audibility? The answer is: yes and 
no, depending on how the damping is applied. Examples 
of both cases will be shown by analysing the resonant 
filter that is shown in Fig. 4.  
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Fig. 4. Simple resonant filter (Rg is damping resistance,  
R is load resistance) 
 
For the circuit in Fig. 4, that has transfer function Hr(s), 
resonant frequency and Q-factor are:  
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The maximum of the transfer function magnitude is: 
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The total energy transfer of the resonant filter is estimated 
by substituting (7) in (1). That gives the following 
expression: 
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If we increase the damping, by increasing the 

resistance Rg, the Q-factor will be lowered as well as the 
total resonant energy transfer. This is always true if the 
coupling to the load is unchanged (R=const.), for 
example if we apply absorptive material in the 
loudspeaker box, or if we apply damping on vibrating 
panels.  

The resonant energy transfer can be also reduced by 
changing the coupling to the load. If we lower the load 
resistance R, according to (7), Q-factor will be raised, but 
the energy transfer will be lower. This effect can appear if 
we change the coupling in horn loaded loudspeakers.  

Previous examples show that a reduction of 
resonances can be achieved by lowering or by increasing 
the Q-factor. The only way to assure that damping 
reduces the perceptual influence of the resonance is by 
confirming that energy transfer due to the resonance is 
reduced.  
 
 

5. CUMULATIVE SPECTRAL DECAY (CSD) 
 

A waterfall plot of the time-frequency function, called 
Cumulative Spectral Decay (CSD), is often used in audio 
measurement software [4] as a primary tool for detection 
of resonances.  

The cumulative spectral decay is defined by Bunton 
and Small [5] as a time-frequency function: 
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where h(t) is the impulse response function and u0(t) is 
the unit step function.  

Theoretically, C(t, ω) is a Fourier transform of the 
part of the impulse response that is defined from time τ=t 
to infinity, as shown in Fig. 5.  
 

 
 
Fig. 5. Construction of  the integral function of C(t, ω) . 

 
To better understand the significance of this function we 
multiply C(t, ω) with ejωt,  
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The equation for imaginary part only is given by: 
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The integral on the right side is a convolution of the 
system impulse response h(t) and the excitation function  
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which is a sine function that exist in time t<0 and being 
zero from t=0. As the linear system response to the sine 
function is also a sine function, we can conclude that ⏐
C(t,ω)⏐ is an envelope of the sine function response, after 
the excitation has been switched off.  

The repeated application of the Fourier transform, 
each for a part of an impulse response that is ahead in 
time for an interval dt, we get the time-frequency function 
which is usually shown as waterfall graph (Fig. 6) or as 
sonogram (Fig. 7).  

The CSD analysis of the system impulse response has 
to be done by treating the impulse response as a 
nonstationary signal. That implies that Fourier analysis 
has to be applied on least possible part of the impulse 
response. Practically, it means that CSD has to be 
calculated using the Short Time Fourier Transform with a 
finite width of the sliding time window. Bunton and 
Small [2] advocated the use of the “apodizing” window, 
which is a type of gradually rising and falling rectangular 
window. Time constant of the rising and falling part is 
usually in the range from 0.02 to 1ms. The form of the 
rising and falling part of the window usually has the form 
of half the Blackman window. 

 
 



 
Fig. 6. CSD waterfall graph for a system with two 
resonances at 200Hz and 5kHz, both with Q = 4. 

 
Two problems can be noted from CSD graphs:  
 

1. CSD has much better resolution at higher 
frequency than at lower frequencies. The reason 
for this is that the DFT analysis has a constant 
bandwidth Δf. 

2. Time axis of CSD graph is linear, so it is 
impossible to compare resonance behaviour at 
lower and higher frequencies with equal weight 
(resonances with same Q factor at lower and 
higher frequencies have a energy decay that lasts 
much longer at lower frequencies). A 
requirement for the replacement of time scale t 
in CSD graphs with period T based scale t/T 
arises.  

 

 
Fig. 7. CSD sonogram for system with two resonances at 
200Hz and 5kHz, both with Q = 4. 

 
The detection of resonances becomes harder if the 

system response contains reflections. Figure 8 shows a 
CSD for a impulse response of a ideal system with a 
single reflection that has an amplitude 10dB below the 
direct wave and a delay of 10.5ms. As can be seen, 
although the reflection is delayed 10.5ms, it obscures the 
waterfall plot after the 6.2 ms (as FFT size is equal 
5.33ms). 
 
 

 
Fig. 8. CSD of an ideal system with a single reflection 
having a amplitude of 10dB below the direct wave and a 
delay of 10.5ms (FFT size is 256 samples or 5.33 ms) 
 

One possible way to remove reflections is to apply 
fixed time gating (or trunctuation) of the impulse 
response before the onset of the reflected wave. This 
method causes that time-bandwidth requirement is 
changing as the sliding window reaches the trunctuation 
point. That must be taken into the account when 
constructing the waterfall plot – only frequency 
components that satisfy the time-bandwidth requirement 
could be shown. If the time interval of a non-trunctuated 
part of a impulse response in the window is T, then the 
lowest shown frequency component would be higher than 
1/T. 

 
5. BURST DECAY ENVELOPE 

 
The monitoring of the shaped sine burst response is a 

known technique for the analysis of the transient 
behaviour of resonant systems [6].  A constant number of 
N cycles of the shaped sine burst (Fig. 9) are used to 
excite the measured system on a frequency fi  with a 
constant relative bandwidth Δf/ fi.  The envelope of the 
system response is monitored to give insight into the burst 
decay patterns. Fig. 10 and alternatively Fig. 11.  shows 
envelopes of shaped sine bursts decay responses. A 
waterfall graph shows the level of burst response 
envelopes as a function of frequency and number of 
periods of the burst sine signal  (t/T).  
 

 

 
 

Fig. 9. Sine bursts shaped with a Gaussian window 
(shown as envelope). The constant number of cycles on 
every frequency assures a constant relative bandwidth 

 



 
 

Fig. 10. Burst decay envelopes of the shaped sine burst 
response of a small loudspeaker 

 
The importance of monitoring the burst response 

envelope in the period based time scale will be shown by 
analysing the response of a simple resonant circuit, which 
is a second order low pass filter that  has a transfer 
function in following form: 
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where ωn  is a natural resonance frequency (T=1/ωn),  ζ  
is a damping factor and  Q=1/(2ζ)   is a Q-factor. The 
filter impulse response has a form of the decayed sine 
function: 
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The real energy decay appears on the frequency 

2
0 1 ςωω −= n .  The system exhibits the resonance if 

the damping is lower than 1 (ζ<1,  Q>0,5). In that case 
the response is a periodically decayed function (ωo is 
real). For higher damping (ζ≥1, Q≤0,5) the response is 
not periodic (ωo is imaginary). 

As a result of the analysis of complex systems like 
loudspeakers, that have many resonances with 
characteristics of high pass, low pass and all-pass filters, 
it can be shown that all resonances have similar decay 
pattern expressed as envelope of the impulse response: 
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or in the logarithmic form: 
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Last equation shows that in the graph with a period 
based scale ( t/Tn = tfn) the logarithm of the resonance 
burst envelope is proportional to the number of periods 

with a proportionality factor equal to resonance damping. 
This property of the period based time scale is in 
accordance with results of the psycho-acoustical 
researches which show that human perceptual system 
gives similar weights to resonances with the same Q-
factor on all frequencies. 

 

 
Fig. 11. Burst decay envelopes of a small loudspeaker – a 

waterfall view of burst decay from Fig. 10. 
 
The system response to the shaped sine burst has two 

characteristic time regions: Rise time and decay time. By 
little more analysis it can be shown that the logarithm of 
the decay envelope lasts much longer than the logarithm 
of the rise envelope. This is the reason why we are almost 
exclusively interested in the monitoring of the burst decay 
envelope. 

The direct measurement of burst decay patterns needs 
a lot of time, as for every frequency the sine burst 
response has to be generated and measured separately. A 
faster way to get a burst decay envelope at various 
frequencies is to use a measured impulse response and 
convolve it with a shaped sine burst signal. As a result it 
gives the burst response. To get the burst decay envelope 
a Hilbert transform can be used [7].  

A more efficient estimation method is applied in the 
program ARTA [4]. It uses the complex Morlet wavelet 
analytic signal in convolution with the system impulse 
response. The magnitude of that response, also known as 
wavelet scalogram, represents the envelope of the shaped 
burst response decay. 

The complex Morlet wavelet analytic signal is defined 
as: 
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It is just a cosine (+ sine) function modulated with a 
Gaussian window. The Fourier transform of the Morlet 
wavelet is equal to: 
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It also has the shape of the Gaussian window.  The 
relative 3dB bandwidth of W(f) is equal to: 
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In acoustical measurements it is common to choose 

relative bandwidths of 1/3 or 1/6 octave, as it is close to 
the value of  the bandwidth of critical bands. 

 

 
Fig. 12 Burst decay for system with two resonances at  

200Hz and 5kHz, both with Q = 4. 
 
The importance of constant relative bandwidth 

analysis and a period based time scale is illustrated in Fig. 
12. The graph shows identical pattern for the burst decay 
of a system with two resonances at 200Hz and 5kHz, both 
with Q = 4.  This is a much more perceptual relevant 
visualization of resonances than represented by the CSD 
plot in Fig. 6, as resonance with a same Q-factor show the 
same decay pattern. 
 

 
Fig. 13. Burst decay of an ideal wideband system with a 

single reflection 
 
There is a problem in evaluation of resonances using 

burst decay envelopes if the Q-factor is lower than two, 
especially when system has delayed paths. In that case a 
period based graph shows some “unnatural” patterns. The 
problem is illustrated in Fig. 13.  It shows the burst decay 
of a ideal wideband system with a single reflection. The 
delay of reflection is  td=10.5ms and the amplitude is 
10dB below the level of the ideal response.  

The decay pattern of a delayed impulse (Fig. 13) 
shows a shift to the right at higher frequencies. At low 

frequencies decay pattern is similar to the decay pattern 
of low-Q resonances. The shift of decays to the right can 
be explained with the following reasoning: Every 
reflection is localized at a number of periods (np) that is 
equal to the product of the reflection delay and a burst 
frequency;  

 
np = f td    (20) 

 
At low frequencies this number is small and a decay 

pattern is smeared with the response of the non delayed 
response. At higher frequencies the delayed reflection is 
localized at a number of period np that is proportional to 
the frequency. That makes the shift of decay pattern to the 
right.  This feature is good and bad. It is bad as it 
obscures the low-Q resonances detection on lower 
frequencies. It is good on higher frequencies as it 
separates decay pattern of reflections (which shifts to 
right), from decay pattern of resonances (which follows 
strait line on one frequency). 

 
 
6. TRANSFER FUNCTION IDENTIFICATION 
 
It will be shown that the most desirable form for 

resonance detection is if we can estimate the analytical 
form of the transfer function in the complex frequency 
plane. The transfer function is defined as: 
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 The transfer function H(s) is the Laplace transform of 

the systems impulse response h(t). The first form of H(s) 
is the quotient of two polynomials B(s) and A(s). They are 
m-order and n-order power series of the complex variable 
s. The second form of the transfer function in Eq. (21) is 
the factorised form with m zeros (szi, i=0,1,..m) and n 
poles poles (spk, k=0,1,..n).  The system frequency 
response H(jω) can be obtained by substituting  jω instead 
of the complex variable s.  

The identification of the transfer function is a process 
of estimating the parameters of the transfer function (21). 
It can be made from the measured impulse response hm(t) 
or the measured frequency response Hm(jω). The problem 
is to find the system order m,n  and coefficients bi and ak, 
that give the best fit of H(jω) to Hm(jω).  Mathematically, 
this problem is defined as nonlinear least square 
estimation (NLSE) problem, where the following error 
function needs to be minimzed: 
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A linearized form of the LSE  is also used, as follows: 
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where W0(ω) is arbitrary weighting function.  It is usually 
a first step in the nonlinear optimization problem (22).  

After the estimation of the set of coefficients of  
polynomials B(s) and A(s), the poles and zeros calculation 
and partial fractional expansion to the form given by (3),  
the parameters of system resonances can be estimated (fn, 
Q, ΔL). 

The problem with a LSE transfer function 
identification in a s-domain is that it is numerically 
unstable, as LSE calculation exhibits sensitivity to 
coefficient ak and bk, that is proportional to k-th power of 
the frequency. A better approach is to make a transfer 
function identification in the discrete complex frequency 
z-domain. The transfer function in the z-domain, called 
the system function, is defined as: 
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The first form of the Hd(z) is a quotient of two 

polynomials B(z-1) and A(z-1) that are m-order and n-order 
power series of complex variable z-1. The second form is 
factorised form with m zeros (zzi, i=0,1,..m) and n poles 
poles (zpk, k=0,1,..n) of the system function.  The 
frequency response function H(ejw) can be obtained by 
substituting z=ejw, where w=ωT is normalized frequency 
and T is the sampling period. As the magnitude of |(ejw)-k| 
is always less than one, for every k, we get an equal 
numerical error sensitivity for all estimated coefficients. 

The identification in the z-domain enables the 
application of simple iterative Steiglitz-McBride method 
for solving the nonlinear LSE problem. In that method, at 
k-th iterative step a linearized error function is being 
minimized: 
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Forming of LSE matrices for the solution of this 

problem in the frequency domain is described in [8]. In 
the Matlab Signal processing toolbox [10] there is a 
version of this method that is defined in the time domain. 
There, the application of weighted function is realized as 
pre-filtering in the time domain, while identification starts 
with a linearized LSE Prony method [11]. 

The solution procedure in both cases is extended in 
this work with application of SVD numerical technique 
(singular value decomposition) to overdetermined LSE 
matrix for removal of poles that appeared to be by-
products of the unwanted measurement noise. 
Unfortunately, that step was not sucessful in cases where 
the measured impulse response contained reflections. 

The sequence of operations needed to obtain the 
parameters of system resonances is as follows: 

 
1) Make measurement of impulse response with 

minimum influence of noise and reflections.  
For the measured impulse response determine 
the start sample as one that gives a response 
closest to minimum phase response. 

2) Use the measured impulse response to estimate 
the equivalent discrete system (24) by using 
the nonlinear LSE method (25). For the 
reduction of system order apply the SVD 
technique on overdetermined LSE matrices. 
The result gives order and coefficients of 
system polynomials B(z-1) and A(z-1). 

3) Calculate zeros and poles of the discrete 
transfer function. 

4) Make a partial fraction expansion, and find the 
residuums of all complex conjugate poles. 

5) Transform complex conjugate pole in z-
domain into poles in s-domain and determine  
residuums. Use equation (2) and (3) to 
determine resonant frequency, Q-factor and 
level of every resonance. 

6) Show results in tabular and graphic form.  
 
As an example for this procedure the results of the 

estimation of resonance parameters for the high-
frequency loudspeaker YAMAHA B26 are shown in 
Table 1.  

 
fr (Hz)  ΔL (dB)  Q-factor

  1699,3  0,84 1,40 
  2409,1  4,11 1,69 

   3544,2 -17,71 4,33 
   4340,7 -11,72 2,98 
   8065,9 -4,19 2,81 
  11103,0  -17,57 7,71 
  12248,0  -7,11 7,83 

14876,0 1,85 4,23 
  15830,0  -19,77 10,39 
  19743,0 -7,54 2,42 
  21204,0 -24,83 15,59 

 
Table 1. Parameters of B26 tweeter resonances 

 
Figure 14 shows the frequency response and the 

individual responses of resonances for that loudspeaker. 
Figure 15 shows the CSD and  Fig. 16 shows the Burst 
decay for the same loudspeaker. It is obvious that CSD 
and Burst decay are inferior to the system identification 
method for detection of audible resonance. The transfer 
function identification gives all the necessary information 
to estimate audibility of resonances while CSD and Burst 



decay only gives insight in the presence of resonances on 
some frequencies. 

 
 

90

95

85

80

75

70
100 1k 10k f(Hz)

dB

 
 
Fig. 14. Frequency response and individual response 
of resonances for tweeter B26 

 
 

 
Fig. 15. CSD of tweeter B26 

 
 

 
Fig. 16. Burst decay of tweeter B26 

 
Step 5) needs some more explanation. The problem is 

how to estimate the transfer function in s-domain from a 
known discrete transfer function of a equivalent system in 
z-domain. It is well known [11] that we can use impulse-
invariant or step-invariant transformations. It depends on 
what type of AD/DA converters are used in the 
measurement of the impulse response.  

The impulse invariant transformation between transfer 
function in the s-domain and system function in the z-
domain is defined as: 
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The step invariant transformation accounts for the 

effects of the sample and hold circuit. It is defined by the 
following equation: 
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By specialization of expression (26) and (27) for cases 

of single and multiple real and conjugate complex poles, 
a table of transformation for partial fraction expansion 
terms from z-domain to s-domain is generated.  

In practical realization of the transfer function 
identification the measurement noise makes that there are 
no multiple poles.  

For both type of transformations the transformation of 
poles is the same;  

 

pkpk
Ts

pk z
T

sez pk ln1, == ,  (28) 

 
the only difference is in the transformation of residuums.  

Older single-channel measurement systems, like 
MLSSA, mainly use multi-bit converters that have sample 
and hold units and analogue antialiasing filters. For that 
kind of converter a step invariant transformation should 
be used.  

Modern converters are generally of sigma-delta type. 
In single channel measurement systems, which use  
sigma-delta converters, the measured transfer function 
contains the response of antialiasing filters. That filters 
are of FIR type and have very high orders (as result of 64-
128 times oversampling).  The ringing of these filters 
introduces a lot of resonances and makes identification 
impossible. Generally, we can expect good results if we 
have to identify systems with 40-50 resonances.  

The better approach is to measure with a two channel 
Fourier analysers [4], with very high sampling rate and 
than make the low-order IIR filtering and down-sampling. 
For example, loudspeaker testing could be done with 
sampling frequency 192kHz, filtered with IIR filter that 
has all resonances above 20kHz and then make 
resampling to 48kHz. In this case the conversion from z-
domain poles to s-domain poles should be done by the 
impulse invariant transformation.   

The problem arises if there is an initial delay in the 
impulse response. Numerically, LSE method tries to 
compensate delays by introducing series of all-pass 
filters, each one with one pole and one zero. That lowers 
the LSE numerical resolution. It is advisable that the start 



of the impulse response is to be set close to the start of the 
equivalent minimum phase system.  
 
 

7. CONCLUSION 
 

The detection of resonances is very important in audio 
system design. Fryer [1] and Floyd [2] have established 
criteria for the evaluation of resonance’s threshold of 
audibility. Following their work, this paper shows that 
three parameters needed for judging the audibility of 
resonances are resonant frequency, Q-factor and the level 
of resonances below the system response. It is shown that 
these parameters define the energy of the resonance, 
which seems to be proportional to the resonance loudness.  

Resonances can be detected from frequency response 
curves, from group delay curves, from loudspeaker 
impedance, from changes of the level of harmonic 
distortions, from CSD waterfall and sonogram graphs and 
from envelope of the burst decay. All these measurement 
are reliable only for the estimation of one parameter: the 
natural frequency of the resonance. The level and the Q-
factor of the resonance can be detected from these curves 
only partially and requires an experienced operator.   

The burst decay envelope is obtained by Morlet 
wavelet transform. That gives the burst decay 
presentation with optimal time bandwidth product. The 
burst decay graphs are shown in a period based scale. 
This enables the presentation of resonances with a same 
Q-factor also with equal decay pattern over all audio 
frequencies. These two characteristics give advanced 
features to the burst decay graph for visualization of 
system resonances.  

The best method for the detection of resonances is by 
using the transfer function identification. It delivers all 
resonance parameters from complex conjugate poles and 
residuums of the partial fraction expansion of the transfer 
function.  

The Steiglitz-McBride nonlinear LSE method was 
reliably used to make identification of systems that has 
more than fifty resonances. The quality of the 
identification procedure depends on three factors: noise 
level, existence of reflections and the determination of the 
impulse response starting sample position. For best results 
the measurement would be done in an anechoic 
environment and starting sample position would be 
determined so that impulse response is as close as 
possible to the equivalent response of the minimum phase 
system.  

The SVD numerical technique is  used to determine 
lowest possible system order. It was found that SVD 
technique is effective only if the measured impulse 
response does not contain reflected energy.  

The conversion system function in z-domain to 
transfer function in s-domain would be done by step 
invariant transformation if the measurement is done with 
a single channel system that has multi-bit converters and 
analogue antialiasing filters. Otherwise, in systems that 
uses sigma-delta converters it is necessary to use a dual 

channel measurement with a high sampling rate, followed 
by down-sampling and IIR  antialiasing filtering. For such 
systems, the conversion from z-domain to s-domain 
should be done by the impulse-invariant transformation.  

For all presented methods for detection of resonances 
one thing is common: if the system response contains 
reflected energy many resonances, especially those with 
low Q-factor, are undetectable. This means that for 
meaningful application of presented methods the 
measurement of the impulse response has to be made in 
an anechoic environment, or gating technique can be used 
to remove part of impulse response that cantain 
reflections. 
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